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How Fair are Medical Imaging Foundation Models?
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Abstract

While medical imaging foundation models have
led to significant improvements across various
tasks, the pivotal issue of subgroup fairness in
these foundation models has remained largely
unexplored. Our work bridges this research
gap by presenting the first comprehensive study
analyzing the subgroup fairness of six diverse
foundation models, encompassing various pre-
training methods, sources of pre-training data,
and model architectures. In doing so, we dis-
cover a concerning trade-off: foundation mod-
els pre-trained on medical images achieve bet-
ter overall performance but are consistently less
fair than those pre-trained on natural images,
with sometimes even worse fairness than base-
line models trained from scratch. To mitigate
these fairness disparities, we show that aug-
menting both the volume of pre-training data
as well as the number of pre-training epochs,
enhances subgroup fairness of medical imag-
ing pre-trained models. Furthermore, to de-
couple the fairness bias from the pre-training
and fine-tuning stages, we employ balanced
datasets for fine-tuning. While fine-tuning on
balanced datasets partially mitigates fairness is-
sues, it is insufficient to completely eliminate
the biases from the pre-training stage, prompt-
ing the need for careful design and evaluation
of medical imaging foundation models. Our
granular analysis reveals that medical imag-
ing pre-trained models tend to favor majority
racial subgroups (White, Asian) whereas nat-
ural imaging pre-trained models tend to favor
minority racial subgroups (Black). Addition-
ally, across all foundation models, we observe
a consistent underperformance on the female
patients cohort. As the community moves to-
wards designing specialized foundation models
for medical imaging, we hope our timely re-
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search provides crucial insights to help inform
more equitable model development.
Keywords: Foundation models, fairness, self-
supervised learning.

1. Introduction

Foundation models pre-trained on large diverse
datasets excel at learning generalizable representa-
tions, which can be utilized for a wide array of
downstream tasks. This exceptional adaptability has
propelled them to set new performance benchmarks
across multiple domains, including vision, language,
and multi-modal applications (Alayrac et al., 2022;
Lu et al., 2022; Brown et al., 2020; Kirillov et al.,
2023). Within the medical imaging landscape, foun-
dation models are particularly attractive owing to
the inherent challenges in acquiring large task-specific
datasets. These emerging medical foundation models
are increasingly mitigating the need for large-scale
labeled data while showing marked effectiveness in
a diverse set of medical imaging tasks (Azizi et al.,
2023; Ghesu et al., 2022; Sellergren et al., 2022).
Nevertheless, the question of biases potentially em-
bedded within these medical foundation models re-
mains largely unexplored and calls for more focused
scrutiny. Existing medical foundation models have
an undue focus on optimizing global performance
metrics, which often disguises performance degrada-
tion for minority subgroups. In the realm of medical
imaging, bias is a real-world problem that can exac-
erbate existing healthcare disparities (Cullen et al.,
2022), leading to unequal treatments based on age,
sex, ethnicity, or other protected attributes (Seyyed-
Kalantari et al., 2020; Glocker et al., 2022). As med-
ical imaging foundation models start to gain trac-
tion, it is critical to understand the effects of differ-
ent types of pre-training strategies and pre-training
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datasets on encoding harmful biases in the founda-
tion model, which can result in biased downstream
models.

In this work, we conduct a comprehensive fairness
analysis of six different foundation models, including
the recently proposed REMEDIS framework (Azizi
et al., 2023). Our foundation models encompass mul-
tiple factors, including pre-training methods (ranging
from supervised learning to contrastive and masked
self-supervised learning), sources of pre-training data
(natural vs medical imaging), as well as the underly-
ing model architectures (ViT vs ResNet). This multi-
faceted investigation provides valuable insights into
the biases introduced by different pre-training strate-
gies within medical foundation models.

Briefly, our main contributions include:

e We present the first comprehensive study eval-
uating the subgroup fairness of a wide range of
medical imaging foundation models, encompass-
ing various pre-training methods, sources of pre-
training data, and model architectures.

e Our results reveal a concerning trade-off: foun-
dation models pre-trained on medical images
achieve better overall performance but are con-
sistently less fair than their counterparts pre-
trained on natural (i.e., non-medical) images,
with sometimes even worse fairness than base-
line models trained from scratch.

e We show that augmenting both the volume of
pre-training data as well as the number of pre-
training epochs enhances subgroup fairness in
medical imaging pre-trained models.

e We demonstrate that fine-tuning on a balanced
dataset, although beneficial, is insufficient to
completely eliminate the biases from the pre-
training stage, prompting the need for careful
design and evaluation of medical imaging foun-
dation models.

e Our granular analysis reveals that medical imag-
ing pre-trained models tend to favor majority
racial subgroups (White, Asian) whereas natural
imaging pre-trained models tend to favor minor-
ity racial subgroups (Black).

As the community moves towards designing spe-
cialized foundation models for medical imaging, our
timely research provides crucial insights to help in-
form more equitable model development. This is es-

pecially pertinent considering the substantial compu-
tational and time resources associated with training
these large foundation models.

2. Related Work

Foundation models have demonstrated compelling
performance across a wide range of tasks, encom-
passing vision and language domains (Alayrac et al.,
2022; Lu et al., 2022; Brown et al., 2020; Kirillov
et al., 2023). In the context of healthcare, medi-
cal foundation models have gained prominence (Azizi
et al.,; 2023; Moor et al., 2023; Zhang and Metaxas,
2023; Ghesu et al., 2022; Sellergren et al., 2022;
Rasmy et al., 2021; Korngiebel and Mooney, 2021),
effectively alleviating the need for extensive labeled
datasets by leveraging generalizable representations
across diverse medical imaging tasks.

Self-supervised learning (SSL) is a popular tech-
nique for pre-training foundation models since it en-
ables models to learn useful representations directly
from unlabeled data. In recent years, multiple types
of SSL have been developed, with contrastive and
masked SSL gaining notable prominence. Contrastive
SSL methods (He et al., 2020; Chen et al., 2020;
Hadsell et al., 2006; Chen and He, 2021) are trained
via pulling together the representations of similar
images whereas pulling apart the representations of
dissimilar images. Conversely, masked SSL meth-
ods (He et al., 2022; Dosovitskiy et al., 2021; Pathak
et al., 2016) are trained by reconstructing occluded
(masked) portions of an input image. Given the ar-
duous task of acquiring large-scale labeled datasets
in the medical imaging domain, SSL techniques have
proven particularly efficacious for distilling represen-
tations from unlabeled medical imaging datasets (Az-
izi et al., 2023; Haghighi et al., 2022; Taher et al.,
2022; Azizi et al., 2021; Zhou et al., 2021b; Haghighi
et al., 2021; Zhou et al., 2021a; Chaitanya et al., 2020;
Tao et al., 2020).

Prior studies (Seyyed-Kalantari et al., 2021; Puyol-
Antén et al., 2022; Larrazabal et al., 2020; Stan-
ley et al., 2022; Jones et al., 2023) have demon-
strated performance disparities in task-specific mod-
els across various protected attributes such as age,
sex, and race. While medical foundation models
demonstrate superior overall performance, it is un-
clear how these foundation models compare against
task-specific models in terms of fairness (Thieme
et al., 2023; W¢jcik, 2022).
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Table 1: Overview of Foundation Models used in this study describing the pre-training methods, pre-training
datasets, and model architectures. (M): Medical.

Pre-training

Model Arch. Method Type Data Datasets
MAE ViT-B Self-supervised ~Masked Natural ImageNet-1K
MAE (M) ViT-B Self-supervised  Masked Medical ChestXrayl4, CheXpert, MIMIC-CXR
MoCov3 ViT-B Self-supervised  Contrastive Natural ImageNet-1K
MoCov3 (M) ViT-B Self-supervised  Contrastive Medical ChestXrayl14, CheXpert

S BiIT ResNet152 ~ Supervised - Natural TImageNet-2IK
REMEDIS ResNet152  Self-supervised Contrastive Medical CheXpert, MIMIC-CXR

Recently, Glocker et al. (2022) observed perfor-
mance disparities across protected subgroups when
evaluating a medical imaging foundation model.
However, different from their approach, which was
limited to a single foundation model trained via su-
pervised contrastive learning, our work marks the
first comprehensive study of a wide range of medical
imaging foundation models, spanning multiple pre-
training techniques, data sources, and architectural
frameworks. Moreover, since the foundation model
used by Glocker et al. (2022) was not publicly avail-
able, their analysis was restricted to using the founda-
tion model as a fixed feature extractor. In contrast,
we fine-tune all our foundation models end-to-end,
which is the most common scenario when utilizing
foundation models. In addition to improving over-
all performance, end-to-end fine-tuning also allows us
to conduct a comprehensive analysis of the influence
of fine-tuning on the latent biases embedded within
these foundation models.

3. Methods

3.1. Foundation Models & Pre-training

In this study, we perform a rigorous fairness analy-
sis across six diverse foundation models: MAE (He
et al., 2022), Medical MAE (Xiao et al., 2023),
MoCov3 (Chen et al., 2021), Medical MoCov3,
BiT (Kolesnikov et al., 2020), and REMEDIS (Az-
izi et al., 2023). Our evaluation encompasses multi-
ple factors, including the type of pre-training method
(supervised vs. self-supervised), the source of pre-
training data (natural vs. medical imaging), as
well as the underlying model architecture (ViT vs.
ResNet). Wherever possible, we use the publicly
available foundation models. However, we also pre-

train some foundation models ourselves in order to
ensure a fair comparison among different foundation
models. A detailed breakdown of the various founda-
tion models used in this study is presented in Table 1.

In terms of pre-training data, MAE, MoCov3, and
BiT are pre-trained on natural images, whereas Med-
ical MAE, Medical MoCov3, and REMEDIS are pre-
trained on medical images, with the exact datasets
delineated in Table 1. Moreover, we also stratify
the foundation models according to the type of pre-
training algorithm — BiT is pre-trained via supervised
learning, MAE and Medical MAE are pre-trained via
masked SSL whereas MoCov3, Medical MoCov3, and
REMEDIS are pre-trained via contrastive SSL.

We use the publicly available versions of MAE,
Medical MAE, MoCov3, and BiT as well as the re-
cently proposed REMEDIS. Since a foundation model
based on MoCov3 has not been developed for medical
imaging, we create Medical MoCov3 via pre-training
on the ChestXrayl4d (Wang et al., 2017) and CheX-
pert (Irvin et al., 2019) datasets. Moreover, in order
to study the effect of increasing medical imaging pre-
training in Section 4.2, we also pre-train MAE on
various medical imaging datasets of increasing size,
as outlined in Table 2. For fair comparison, we uti-
lize a ViT-B/16 encoder for both MoCov3 and MAE.
Moreover, we follow the same augmentation strate-
gies employed by Hosseinzadeh Taher et al. (2021) to
pre-train both methods. These augmentations con-
sist of initial cropping and resizing to 224 x224, ran-
dom horizontal flipping with a probability of 0.5, and
random rotation within the range of -7 to +7 de-
grees. We utilize the same pre-training configurations
specified in the official papers (Chen et al., 2021; He
et al., 2022), with both self-supervised models trained
on 8 V100 GPUs for 800 epochs. The model check-
point exhibiting the lowest self-supervised loss during
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the final 5% of epochs is selected for subsequent fine-
tuning.

3.2. Fine-tuning

We fine-tune the aforementioned foundation mod-
els on the multi-label classification task of iden-
tifying various pathologies from chest radiographs.
We adopt the same fine-tuning settings as Medical
MAE (Xiao et al., 2023) and fine-tune each founda-
tion model on a single V100 GPU. Concretely, we
use an AdamW optimizer, with hyperparameters (51,
B2, and weight decay set to 0.9, 0.95 and 0.05 re-
spectively. The base learning rate is configured at
2.5e-4, with a warm-up phase spanning 5 epochs,
followed by subsequent cosine annealing. Moreover,
we use a layer-wise Ir decay of 0.55, RandAug mag-
nitude of 6 and DropPath rate of 0.2. We use a
batch size of 32 for the ResNet152 models (BiT and
REMEDIS) whereas a batch size of 128 for the ViT-
B models (MAE, Medical MAE, MoCov3, and Medi-
cal MoCov3). Since the medical imaging pre-trained
models converge faster than their natural imaging
pre-trained counterparts, we fine-tune Medical MAE,
Medical MoCov3, and REMEDIS for 100, 100, and 20
epochs, respectively, as opposed to 200, 200, and 30
epochs, respectively, for MAE, MoCov3, and BiT.

3.3. Dataset Splits

Fine-tuning is conducted on a subset of the CheX-
pert (Irvin et al., 2019) dataset, employing the
same dataset splits as those used in Glocker et al.
(2022) and Gichoya et al. (2022). This subset com-
prises 127,118 Chest X-ray scans from 42,884 patients
and is partitioned into training (76,205), validation
(12,673), and test (38,240) sets, with no patient over-
lap between the different splits. Following Glocker
et al. (2022), we resample the test set to ensure bal-
anced demographic representation. Moreover, since
it is a multi-label classification problem, we create a
separate test set for each disease in order to ensure
equal prevalence of all diseases across all subgroups.

3.4. Metrics

We evaluate all the foundation models via two sets
of metrics — one focused on performance whereas the
other focused on fairness. For performance, we uti-
lize AUC and report the mean AUC across all 14
pathologies. For assessing fairness, following prior
work (Ktena et al., 2023), we report the fairness gap,

defined as the difference in AUC between the worst-
and best-performing subgroups. We report the fair-
ness gaps individually across both sex and race.

For clarity, we convert fairness gaps (FG) to fair-
ness scores (FS) when plotting, such that higher val-
ues are better for both the performance as well as the
fairness subplots.

FS=C-FG, C=max{FG}¥, +¢ (1)
In order to avoid a fairness score of 0, which might
misleadingly suggest a completely unfair model, we
set € to 1. Effectively, this transforms the maximum
fairness gap to correspond with the minimum fairness
score of 1.

4. Results

We conduct a comprehensive set of experiments to
understand the subgroup fairness of the aforemen-
tioned medical imaging foundation models. Firstly,
Section 4.1 studies the impact of pre-training meth-
ods and data sources on classification performance
and fairness. Next, Section 4.2 delves into the re-
lationship between increasing medical imaging pre-
training and subgroup fairness. This is then followed
by Section 4.3, which investigates the impact of fine-
tuning these foundation models on balanced datasets
to decouple the fairness biases from the pre-training
and fine-tuning stages. Section 4.4 provides a fine-
grained analysis of individual subgroups to under-
stand which groups are advantaged or disadvantaged.
Lastly, Section 4.5 concludes by investigating various
ensembling strategies to leverage the complementary
strengths of multiple foundation models.

4.1. Performance and Fairness

In this section, we compare multiple foundation mod-
els in terms of both performance and fairness. For
clarity, we focus on the four foundation models that
utilize the same ViT-B architecture — MAE and
MoCov3 pre-trained in a self-supervised fashion on
natural as well as medical imaging datasets. Ad-
ditional analyses involving the BiT and REMEDIS
models, which adopt a ResNet152 architecture and
are trained via supervised and hybrid supervised +
self-supervised paradigms respectively, are available
in Appendix A.

Figure 1 provides a comprehensive evaluation of
classification performance as well as fairness across
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Figure 1: Classification performance and fairness metrics for foundation models pre-trained on either natural
or medical images, benchmarked against baseline models initialized from scratch. Higher is better

for both the AUC and Fairness subplots.

both gender and race for the aforementioned foun-
dation models. As outlined in Section 3, all mod-
els are fine-tuned on the CheXpert dataset but vary
in terms of their pre-training techniques, amounts
of pre-training data, and data sources. A holistic
observation reveals the benefits of pre-training, en-
hancing both classification performance and fairness
relative to models initialized from scratch. Fine-
grained insights about the effects of different pre-
training datasets and SSL techniques are presented
in the subsequent analysis.

4.1.1. NATURAL VS MEDICAL IMAGING
PRE-TRAINING

Our evaluation demonstrates substantial improve-
ment in classification performance for natural as well
as medical imaging pre-trained models in contrast to
those initialized from scratch (cf. Classification Per-
formance subfigure in Figure 1). Consistent with the
SSL literature (Haghighi et al., 2022), we observe that
medical imaging pre-training yields a greater boost in
Chest X-ray classification performance compared to
natural imaging pre-training.

Next, we study the interplay of natural versus med-
ical imaging pre-training on the fairness of these foun-
dation models across sex and race. Across both pro-
tected attributes, we observe that foundation models
pre-trained on natural images exhibit the best fair-
ness. In contrast, foundation models pre-trained on
medical images are consistently worse in terms of fair-
ness than their counterparts pre-trained on natural

images. In fact, medical imaging pre-training can
sometimes even exacerbate racial disparities in com-
parison to a baseline model initialized from scratch
(cf. Race Fairness subfigure in Figure 1).

Additionally, we note that models pre-trained on
medical datasets tend to perform better on sex
fairness in comparison to race fairness. This ob-
servation may be attributed to the data imbal-
ances in the medical datasets; for instance, the
CheXpert dataset manifests a 59/41 gender split
(Male/Female) and a highly skewed 78/15/7 racial
split (White/Asian/Black).!

4.1.2. CONTRASTIVE VS MASKED SSL

In terms of classification performance, we note that
masked SSL consistently outperforms contrastive SSL
across both natural and medical imaging pre-training
paradigms (cf. Classification Performance subfigure
in Figure 1). This observation aligns with existing
literature (He et al., 2022; Khan and Fang, 2023),
which has shown that masked pre-training methods
generally exhibit superior performance over their con-
trastive counterparts.

In terms of subgroup fairness, masked SSL exhibits
improved fairness than contrastive SSL across both
sex and race when pre-trained on natural images.
Conversely, when pre-trained on medical images, con-
trastive SSL yields fairer models, with masked SSL

1. For a detailed breakdown of the various datasets, please
refer to Tables 1 of Seyyed-Kalantari et al. (2020)
and Glocker et al. (2022).
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even underperforming a baseline model initialized
from scratch in terms of race fairness. This indicates
that masked pre-training is particularly susceptible
to subgroup imbalances in the medical pre-training
data. We hypothesize that contrastive pre-training
is able to learn better representations regardless of
the subgroup affiliation since it effectively treats each
image as a separate class, thereby contrasting it not
only against images from other subgroups but also
against different images from within the same sub-
group. Consequently, contrastive SSL is not as ad-
versely affected by the highly skewed racial splits
in medical pre-training datasets as masked SSL (cf.
Race Fairness subfigure in Figure 1).

4.2. Amount of Medical Imaging Pre-training

In this section, we study the impact of increased
medical imaging pre-training on model performance
and fairness. Firstly, we investigate the effect of in-
creasing the volume of pre-training data. To this
end, we pre-train MAE on ChestXrayl4, CheXpert
as well as the combined (ChestXrayl4 + CheXpert)
datasets following the official MAE (He et al., 2022)
pre-training configurations.

As illustrated by the results in Table 2, increas-
ing the amount of pre-training data (ChestXrayl4 <
CheXpert < ChestXrayl4 + CheXpert) not only im-
proves the overall classification performance but also
enhances subgroup fairness across sex and race. This
resonates with the insights of Seyyed-Kalantari et al.
(2020), who observed reduced bias when using multi-
ple datasets in a supervised learning context. It is in-
triguing that a similar observation also holds true for
pre-training via self-supervised learning, which does
not use any labels during pre-training.

Tables 4 and 5 (in Appendix C) study the impact
of increasing pre-training epochs and dataset frac-
tions, respectively, on model performance and fair-
ness. Once again, we observe that increased pre-
training improves both overall performance as well
as subgroup fairness.

Hence, within the realm of medical imaging pre-
training, we conclude that amplifying the volume
of pre-training data as well as the number of pre-
training epochs leads to favorable outcomes for both
overall performance and subgroup fairness.

4.3. Balanced Fine-tuning

Although we have observed significant differences in
fairness of the pre-trained foundation models, it re-

Table 2: Impact of increasing pre-training data on
model performance and fairness. All models
are pre-trained via MAE. Higher AUC and
lower Fairness Gaps are desirable. CX14:
ChestXrayl4, CXPT: CheXpert.

Classif. Fairness Gap
AUCT Sex] Racel

Pre-training Data

CX14 79.97 1.58 3.09
CXPT 80.98 1.49 2.85
CX14 4+ CXPT 81.38 1.29 2.82

mains unclear if this fairness gap stems from the pre-
training or fine-tuning stages. In order to decouple
the fairness bias from pre-training and fine-tuning,
we fine-tune these foundation models on a balanced
fine-tuning dataset. Hence, any remaining fairness
discrepancies can be primarily attributed to the pre-
training stage.

Since the original training set (cf. Section 3.3) is
highly skewed across racial attributes, we construct
a balanced set by resampling it so that each of the
racial subgroups have the same number of instances
as the minority subgroup. Since the majority sub-
group (White) is the most unbalanced in terms of sex,
via undersampling from this group, we also ensure
that the resulting dataset is more balanced across sex.

Figure 2 reports the overall classification perfor-
mance and subgroup fairness of fine-tuning on this
balanced dataset. While the absolute values between
Figures 1 and 2 are not directly comparable due to the
reduced dataset size, the relative trends in fairness
underscore the positive impact of dataset rebalanc-
ing. In particular, all foundation models now exhibit
improved racial fairness relative to the baseline model
initialized from scratch (cf. Race Fairness subfigures
in Figures 1 and 2). We observe that balanced fine-
tuning especially benefits masked SSL pre-trained on
medical images since this class of pre-training meth-
ods is particularly susceptible to subgroup imbalances
in the medical pre-training data (cf. Section 4.1).

However, despite these adjustments in the fine-
tuning stage, we note that foundation models pre-
trained on natural images continue to outperform
those pre-trained on medical images in most cases.
This illustrates that fine-tuning on a balanced
dataset, although beneficial, is insufficient to com-
pletely eliminate the biases from the pre-training
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Figure 2: Impact of balanced fine-tuning on performance and fairness of medical foundation models. Note:
MAE and MoCov3 pre-trained on medical images exhibit overlapping performance in the Sex

Fairness subplot.

stage, prompting the need for careful design and eval-
uation of medical imaging foundation models.

For a more equitable pre-training regimen, one
could consider training foundation models on bal-
anced pre-training datasets in order to mitigate
harmful biases encoded during the pre-training stage.
However, this strategy may come with the drawback
of diminished model performance, given the reduced
size of pre-training data. As discussed in Section 4.2,
an alternative pathway to enhance subgroup fair-
ness involves collecting multiple datasets from var-
ious sites, thereby increasing both the pre-training
data volume as well as the patient diversity in the
pre-training datasets. Overall, it is important to rig-
orously evaluate all approaches to ascertain the opti-
mal trade-off between overall model performance and
subgroup fairness.

4.4. Analysis: Pathologies and Protected
Attributes

In this section, we present a fine-grained analysis of
the fairness of these foundation models across the in-
dividual sex and race subgroups to understand which
subgroups are advantaged or disadvantaged. Figure 3
presents a comprehensive analysis of average perfor-
mance across all 14 diseases segregated by individual
sex (Male, Female) and race (White, Asian, Black)
subgroups. Concretely, for each of these subgroups,
we compute the relative change in performance for
that subgroup compared against the average model
performance across all subgroups. Hence, positive

values indicate that the model overperforms on that
subgroup compared to the overall population and vice
versa.

Across the sex categories, we observe a consistent
underperformance of all six foundation models on
the female patients subgroup. Whereas the under-
representation of female patients in the pre-training
datasets could partially explain this phenomenon, it
is not clear if this data imbalance is the sole factor
responsible for this consistent underperformance, as
we discuss below.

Recalling the racial distribution in the CheXpert
dataset as 78/15/7 (White/Asian/Black), our anal-
ysis shows that medical imaging pre-trained models
result in improved performance of the more frequent
subgroups (White, Asian) compared to the overall
population performance. Conversely, models pre-
trained on natural images result in enhanced perfor-
mance of the minority subgroup (Black). We hypoth-
esize that this improved performance on the Black
patients subgroup is potentially due to the higher
prevalence of some diseases in this subgroup (e.g.,
out of the 11 diseases with less than 30% prevalence,
5 of them have the highest prevalence in the Black
patients cohort). However, this improvement is di-
minished when pre-training on medical datasets with
highly skewed racial splits, which tend to dispropor-
tionately favor the majority subgroups.

In addition to the average performances across sub-
groups, we also report the individual performances on
each pathology, stratified by race and gender in Fig-
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Figure 3: Change in performance of individual subgroups relative to the average performance across the
entire population. The y = 0 line represents the average performance across the entire population.

ures 5 and 6 respectively (Appendix B). For clarity,
we focus on the five pathologies - Atelectasis, Car-
diomegaly, Consolidation, Edema, and Pleural Ef-
fusion. From the disease stratification by sex (Fig-
ure 5), we note that most diseases are diagnosed
better on male patients. However, an interesting
anomaly is Pleural Effusion, which is consistently
diagnosed better on female patients despite similar
prevalences of Pleural Effusion in both male and fe-
male patients in the CheXpert dataset. From the dis-
ease stratification by race (Figure 6), we observe that
for most pathologies, all six foundation models either
consistently overperform or consistently underper-
form on that racial subgroup compared to the average
model performance across all subgroups. Lastly, we
note that Edema is the most fairly diagnosed condi-
tion, with the least disparity in classification perfor-
mance across both sex and race subgroups.

4.5. Foundation Model Ensembles

In this section, we examine whether different cate-
gories of foundation models offer complementary ben-
efits that can be effectively leveraged through en-
sembling techniques. As delineated in Table 3, we
construct ensembles based on the architecture-SSL
combination, the pre-training data domain, as well as
a final comprehensive ensemble that incorporates all
foundation models. Empirically, we observe that the
ensemble of foundation models pre-trained on med-
ical images achieves the best overall performance.
On the other hand, the ensemble comprising foun-

Table 3: Foundation model ensembles. Best result is
in boldface, second best is underlined.

Ensemble Classif. Fairness Gap
AUC 1 Sex ] Racel
ViT (Masked) 81.0 121  2.82
ViT (Contrastive) 80.3 1.13 2.90
ResNet (Contrastive) 81.6 1.15 2.95
Natural Imaging 80.4  0.78 294
Medical Imaging 81.6 1.39 3.12
All Foundation Models ~ 81.4  1.12  2.84

dation models pre-trained on natural images excels
in fairness across sex attributes. Owverall, the en-
semble integrating all foundation models strikes a
balanced trade-off between performance and fairness
across both gender and racial dimensions, signifying
that ensembling could serve as an effective strategy
for leveraging the heterogeneous strengths of multiple
foundation models.

4.6. Limitations and Future Work

With medical imaging foundation models becoming
increasingly popular, it is essential to study the fair-
ness of these models in order to understand their im-
pact on human health. Our study marks an initial
step in this direction. Although we conduct a compre-
hensive fairness analysis of multiple foundation mod-
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els, there are several avenues for future work. A key
improvement would be the examination of more spe-
cific subgroups. For instance, treating all Asian eth-
nicities as one group — a consequence of the generic la-
bels provided by most datasets — is unfortunate. The
release of publicly accessible datasets with more gran-
ular ethnic classifications would significantly enhance
the comprehensiveness of future fairness studies. Ad-
ditionally, future work could investigate other metrics
that capture various notions of fairness. Lastly, while
this paper focuses on the downstream task of Chest
X-ray diagnosis, it would be an interesting direction
for future research to explore how these foundation
models impact fairness across different tasks, espe-
cially when transferring across different data modal-
ities (e.g., from X-ray to Fundus images) or different
anatomical regions (e.g., from Chest X-rays to Knee
X-rays).

5. Conclusion

We present the first comprehensive study analyzing
the subgroup fairness of six diverse foundation mod-
els across the protected attributes of sex and race.
Our findings reveal a concerning trade-off: medical
imaging pre-trained models excel in overall perfor-
mance but are consistently worse in fairness com-
pared to their natural imaging pre-trained counter-
parts. We show that fine-tuning on balanced datasets
only partially mitigates these fairness discrepancies,
underscoring the need for careful design and evalu-
ation of medical imaging foundation models. Our
fine-grained analysis further reveals consistent un-
derperformance for female patients across all founda-
tion models. Moreover, we find that medical imaging
pre-trained models favor majority racial subgroups,
while natural imaging pre-trained models favor mi-
nority subgroups. As the community moves towards
designing specialized foundation models for medical
imaging, we hope our timely research provides crucial
insights to help inform more equitable model devel-
opment.
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Appendix A. ResNet Foundation
Models

Figure 4 compares the ResNet152 foundation mod-
els — BiT and REMEDIS - in terms of both perfor-
mance and fairness. BiT is pre-trained in a super-
vised manner whereas REMEDIS is pre-trained via
supervised as well as contrastive self-supervised learn-
ing. Similar to the analysis presented in Section 4.1,
we note that the natural imaging pre-trained model
(BiT) exhibits better subgroup fairness across both
sex and race than the medical imaging pre-trained
model (REMEDIS).

Appendix B. Disease Disparities
Across Sex and Race

In this section, we report the individual performances
on each pathology, stratified by race and gender, in
Figures 5 and 6 respectively. For a comprehensive
discussion of these results, please refer to Section 4.4.

Appendix C. Amount of Medical
Imaging Pre-training

Tables 4 and 5 study the impact of increasing pre-
training epochs and dataset fractions, respectively,
on the performance and fairness of medical founda-
tion models. Similar to the results presented in Sec-
tion 4.2, we observe that increased pre-training im-
proves both overall performance as well as subgroup
fairness.

Table 4: Impact of increasing pre-training epochs on
model performance and fairness. Higher
AUC and lower Fairness Gaps are desirable.

Epochs Classif.  Fairness Gap
AUC 1T Sex] Racel
200 79.2 1.54 3.56
400 79.9 1.44 3.11
800 79.9 1.43 3.03

Table 5: Impact of increasing pre-training dataset
fractions on model performance and fair-
ness. Higher AUC and lower Fairness Gaps
are desirable. CXPT: CheXpert.

Dataset Classif.  Fairness Gap
AUC1T Sex| Racel

CXPT (30%) 80.6 1.53 2.86

CXPT (100%) 81.0 149 285

Appendix D. Fine-tuning Strategies

Self-supervised foundation models are generally fine-
tuned either via a linear probing setup or an end-
to-end fine-tuning setup. In practice, end-to-end
fine-tuning is the most commonly utilized fine-tuning
technique since it allows for much better performance
compared to linear probing. Hence, we primarily fo-
cus on end-to-end fine-tuning in this paper. However,
for completeness, we also provide the linear probing
results in Table 6, which shows that fine-tuning im-
proves both overall performance as well as fairness in
comparison to linear probing.

Table 6: Impact of fine-tuning strategy on model per-
formance and fairness. Higher AUC and
lower Fairness Gaps are desirable. LP: Lin-
ear probing, FT: Fine-tuning. FG: Fairness

Gap.
Method AUC 1t FG (Sex) | FG (Race) |
LP FT LP FT LP FT
MoCo-v3 719  78.7 1.56 1.08 3.66 3.00
MAE 66.7  79.3 2.59 0.92 3.00 2.77
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Figure 4: Classification performance and fairness metrics for ResNet foundation models pre-trained on either
natural or medical images, benchmarked against a baseline model initialized from scratch. Higher
is better for both the AUC and Fairness subplots. The natural imaging pre-trained model (BiT)
exhibits better subgroup fairness across both sex and race than the medical imaging pre-trained

model (REMEDIS).
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Figure 5: Change in performance of each individual disease, segregated by sex, in relation to the average

performance for that disease across the entire population. The y = 0 line represents the average
performance for that disease across the entire population. Atel: Atelectasis, Card: Cardiomegaly,
Cons: Consolidation, Edem: Edema, Pleu: Pleural Effusion.
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Figure 6: Change in performance of each individual disease, segregated by race, in relation to the average
performance for that disease across the entire population. The y = 0 line represents the average
performance for that disease across the entire population. Atel: Atelectasis, Card: Cardiomegaly,
Cons: Consolidation, Edem: Edema, Pleu: Pleural Effusion.
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