
Extending Browser Extension Fingerprinting to Mobile Devices
Brian Hyeongseok Kim

brian.hs.kim@usc.edu
University of Southern California

Los Angeles, CA, USA

Shujaat Mirza
shujaat.mirza@nyu.edu
New York University
New York, NY, USA

Christina Pöpper
christina.poepper@nyu.edu

New York University Abu Dhabi
Abu Dhabi, UAE

ABSTRACT
Browser extensions are tools that extend basic browser features to
enhance web experience. It has been shown that extensions can
be exploited to fingerprint users and even infer personal informa-
tion about them [8, 10]. However, as browser extensions have been
limited to desktops previously, no prior work has explored finger-
printability of extensions on mobile devices, despite the increasing
extension support for mobile browsers. This paper aims to fill this
gap by extending extension fingerprinting techniques, traditionally
performed on desktops, to mobile phones. Out of the 16 chosen ex-
tensions, we discover that 6 extensions are uniquely identifiable by
their client-side modifications. We present our experimental results
through our evaluation of variable interactions between various
browsers, devices, and extension lists, and investigate how shift-
ing the attention from the list of installed extensions to the actual
modification data can help attackers discriminate users better.

CCS CONCEPTS
• Security and privacy → Pseudonymity, anonymity and un-
traceability; Browser security.

KEYWORDS
extension fingerprinting; browser extensions; mobile browsers

ACM Reference Format:
Brian Hyeongseok Kim, Shujaat Mirza, and Christina Pöpper. 2023. Extend-
ing Browser Extension Fingerprinting to Mobile Devices. In Proceedings of
the 22nd Workshop on Privacy in the Electronic Society (WPES ’23), Novem-
ber 26, 2023, Copenhagen, Denmark. ACM, Copenhagen, Denmark, 6 pages.
https://doi.org/10.1145/3603216.3624955

1 INTRODUCTION
Browser fingerprinting is a technique used to identify users based
on attributes collected from web browsers, bypassing the need for
stateful identifiers like cookies. One attribute utilized in browser
fingerprinting is the inventory of installed extensions, which en-
hance the default web browsing experience by offering customized
functionalities. Various techniques [12, 16, 17, 22] have been de-
vised to enumerate extensions on different browsers on a large
scale. Consequently, countermeasures have been developed to ob-
scure information from potential attackers while preserving the
functionality of the extensions [9, 23].

This work is licensed under a Creative Commons Attribution
International 4.0 License.

WPES ’23, November 26, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0235-8/23/11.
https://doi.org/10.1145/3603216.3624955

As web experience becomes more mobile-driven, it is impera-
tive to investigate the potential risks associated with extension
fingerprinting on mobile platforms. Unlike previous works focused
on desktop environments, this work explores the effectiveness of
these techniques on mobile browsers. Furthermore, we examine
the interplay between device, browser, and extension list to derive
meaningful insights from our findings.

This paper focuses on two behavioral methods of extension fin-
gerprinting, Document Object Model-based (DOM) [22] and Cascad-
ing Style Sheet-based (CSS) [12] techniques. Unlike non-behavioral
techniques that rely on extensions’ configurations, which could be
obfuscated or randomized per session [16], behavioral techniques
rely on changes made to page elements, which are inherently tied
to the extensions’ functionalities.

Attacker Model: We consider a malicious individual aiming
to fingerprint users’ extensions by placing a tracking script on a
webpage that potential victims will access. Because extensions only
have access to modify pre-specified domains, our attack model as-
sumes that the tracking script is loaded on a domain accessible by
the extension, which can modify elements on this malicious page as
desired by extension functionalities. This scenario is definitely pos-
sible, since an inexperienced extension developer could just request
access to all domains and a naive user can grant this extension
access to every domain they visit, including the malicious webpage.

We also assume that a simple page visit launches the attack.
While certain extension functionalities may rely on user interac-
tions (e.g. starting to type for spell check) or specific elements (e.g. a
login form), our focus in this paper is on modifications that do not
necessitate any user input or preexisting elements. As a result,
anyone visiting the malicious page is considered a potential victim.

DOM Technique: Our DOM technique is derived from Starov
andNikiforakis [22], who dynamically create DOMelements queried
by extensions and record any changes made to these elements, simi-
lar to the idea of honey pages [7]. This technique can also track other
types of modifications besides insertion of a new element, such as
removal or changes of existing elements. Considering our attacker
model, we modify this method and observe all DOM changes that
are made to our empty static page without dynamically creating
elements that extensions may look for. In other words, we track any
additions, removals, or changes to DOM elements that extensions
make with no prior requirements (Listing 1 in Appendix A).

CSS Technique: Our CSS technique is derived from Laperdrix
et al. [12], who collect unique id or class names of HTML <div>
tags that are specific to certain extensions’ modifications. These
identifiable names are then used to create what we refer to as a
"div pair", two <div> elements with identical names (Listing 2 in
Appendix A). While one div is styled by the extension based on
its functionality, the other remains unchanged. Consequently, any

https://doi.org/10.1145/3603216.3624955
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3603216.3624955


WPES ’23, November 26, 2023, Copenhagen, Denmark Brian Hyeongseok Kim, Shujaat Mirza, & Christina Pöpper

Figure 1: Our extension fingerprinting attack pipeline

CSS discrepancies within a pair indicate that a certain extension
has modified it.

Our paper enhances the understanding of extension fingerprint-
ing by being the first to explore extension fingerprinting in the
mobile context, to the best of our knowledge. In addition, we move
beyond the binary identification of whether or not a specific exten-
sion is installed and instead focus on the granular data obtained
from the modifications made by extensions. Finally, we derive ad-
ditional insights about the effect of variable interaction on the
uniqueness of extension fingerprints through our cross-device and
cross-browser comparisons.

The remainder of this paper is as follows. Section 2 gives an
overview of our experimental design and results. Section 3 presents
our main takeaways. Section 4 discusses related work. Section 5 con-
cludes the paper with future work. Appendix A contains example
scripts. Appendix B provides additional details on our results.

2 EXPERIMENTS AND RESULTS
2.1 Data Collection & Study Design
We developed a JavaScript fingerprinting attack, hosted on an
Ubuntu server. Since mobile browser extensions are still in their
early stages, their usage is not widespread yet. Thus, instead of a
user study, we opted for a lab experiment with various permuta-
tions of device, browser, and extension list to gather comprehensive
data points representing different users.

The overarching pipeline of our fingerprinting attack is shown
in Figure 1. First, the client first visits our web page hosted on the
server and receives our HTML and JavaScript files, which include
our attack program code. Our server page, by design, is initially
an empty HTML document with reference to our fingerprinting
script files. Upon receiving all the files, extensions installed on
the client’s browser make appropriate modifications based on their
functionalities. These changes only affect the page on the client side
and not on the server side. Once this is all complete, the window’s
load event is fired, which is when our attack program stops and
sends the gathered data back to the server.

The testedmobile browsers are Kiwi, Yandex, and Firefox Nightly,
and the tested mobile devices are Samsung Galaxy Note 10 5G,
OnePlus Nord, OnePlus A6000, which are all Android. We do not
consider Chrome because it does not support mobile browser ex-
tensions. We mitigate this by using Kiwi and Yandex, two popular
Chromium-based mobile browsers that support Chrome extensions.
Also, instead of using the default mobile Firefox, which has limited

Table 1: List of 6 mobile extensions tested in the main study

Extension ID’able Technique Used

360 Internet Protection Yes CSS
AdBlocker Ultimate Yes CSS
Avast SafePrice Yes CSS & DOM
Dark Reader Sometimes DOM
DuckDuckGo Yes CSS
Touch VPN Yes CSS

list of extensions currently available, we use Firefox Nightly, a pre-
release developer version of Firefox, which allows downloading
any extensions from the Mozilla Add-on Store through syncing.

The initial extension list is comprised of the top 25 extensions
from both Firefox and Chrome web stores at the time of the study,
with a total of 50 extensions. After excluding overlapping exten-
sions, those not available in either store, and those deemed non-
identifiable based on prior research [12, 22], we narrowed down the
list to 16 extensions (Table 3 in Appendix B). Following a prelimi-
nary study with Galaxy, we concluded that there are 6 extensions
uniquely identifiable in at least one of our tested browsers. The
remainder of this paper discusses our main study focusing on these
6 extensions (Table 1).

In our main study, we conducted tests for each device-browser
pair. We started with a baseline data point of no extensions installed,
which served as our ground truth. Then, we installed each extension
individually, recording a data point for each installation. Finally, we
captured a data point with all the extensions installed. In total, we
analyzed approximately 70 permutations (i.e. users) for our study.

2.2 DOM Extensions
This subsection presents our results regarding Avast SafePrice and
Dark Reader, the two identifiable extensions using the DOM tech-
nique. Detecting whether these extensions exist or not required
mapping the DOM mutations to the particular extension installed
at that data point. This process was done manually, since there were
only at most 30 DOM mutations observed at any given instance.

Regarding Avast SafePrice, 15 DOM mutations that consistently
appeared with its installation were mapped to Avast SafePrice. One
mutation, however, changed the fieldset id to different values for
every access. Since this variance was a consistent behavior, and not
specific to certain device, browser, or extension list, we consider
this behavior as expected and perform no additional analysis.

Regarding Dark Reader, DOM mutations were sometimes ob-
served and sometimes not, despite its seemingly working function-
ality (i.e. the extension inverts bright colors to dark). There was
also inconsistency regarding whether such mutations are observed
based on the extension list (i.e. in isolation or when all 6 exten-
sions were installed). In addition, the number of observed DOM
mutations varied. Sometimes, one MutationRecord was the entire
list of changes, while at other times, an entire <script> or <style>
tags of 10+ lines were added and removed. Finally, Dark Reader
was the only one out of the 6 tested extensions, where there was
unexpected data variance across the three times we accessed our
page for a given instance to check for validity. This caused difficulty



Extending Browser Extension Fingerprinting to Mobile Devices WPES ’23, November 26, 2023, Copenhagen, Denmark

in treating these three accesses as a singular data point as intended,
so we do not make further analysis for Dark Reader either.

To summarize, we were able to detect Avast SafePrice exten-
sion consistently and Dark Reader sometimes. We do not make
any further analysis involving the cross-device or cross-browser
comparisons because 1) for Avast SafePrice, we have checked that
all mutations are indeed the same across the board (or random for
the attribute "fieldset id"), and 2) for Dark Reader, our data was
inconsistent for us to derive meaningful observations.

2.3 CSS Extensions
In the case of the CSS technique and the five related extensions
(see Table 1), detecting the presence or absence of an extension is
achieved by examining the existence of corresponding records in
our JSON data. Our attack program captures instances where there
is a disparity between the baseline and trigger values of specific
div pairs associated with a given extension. If no such records are
found, it can be inferred that the extension is not installed.

To make further analysis beyond detecting if this extension is
present, this subsection explores various factors that render values
different for these extensions. More specifically, we study the in-
teraction of specific browsers, devices, and installed extension lists
that changed specific baseline or trigger values, which the attacker
can use to infer more information about the user beyond their exten-
sion list. The summarized version of results can be found in Table 2,
and the detailed version is provided in Table 4 in Appendix B.

2.3.1 Cross-Device. Cross-device comparison is done across the
three devices tested to see if device variation results in any differ-
ences in either baseline or trigger values. We made pairwise device
comparisons (Nord vs. Galaxy, Nord vs. A6000, Galaxy vs. A6000).
The resulting table is shown on the left side of Table 2.

The “All" row stands for the data points when all the extensions
were installed and tested at the same time to observe any cross ef-
fects between CSS extensions. There were no cross effects observed,
as indicated by the numbers found in the “All" row, which is simply
the sum of all other rows in that column. The denominator of a
given row indicates the total number of queried comparison points
for cross-device on some specific attribute’s value. The numerator
indicates howmany of these values are actually different for a given
pairwise device comparison. More generally, 0 in the numerator
means that all the values recorded are the same across the devices.

Our cross-device comparison shows that Galaxy and A6000 de-
vices produce more similar fingerprints with each other than with
Nord, as shown by lower percentage in the Galaxy vs. A6000 column
compared to the other two columns regardless of the extension (or
browser, as indicated in the detailed table in Appendix B). This was
surprising at first since Galaxy is produced by Samsung whereas
A6000 and Nord are both produced by OnePlus. But upon closer
examination, we concluded that most differences were all size re-
lated (i.e. the display size for Galaxy Note 10 5G and OnePlus A6000
is both 160mm, whereas it is 164mm for OnePlus Nord). In other
words, even if two users have the same extensions downloaded, an
attacker can discriminate the two through the information about
its device in use, provided by extension modification data. This is
an additional component to the simple extension list detection.

2.3.2 Cross-Browser. We made three pairwise cross-browser com-
parisons (Yandex vs. Kiwi, Yandex vs. Firefox, Kiwi vs. Firefox), as
shown on the right side of in Table 2. Since 360 Internet Protection
was not compatible on our Firefox Nightly browser, Yandex vs. Kiwi
comparison was only done for this extension.

Our cross-browser comparison shows that Yandex and Kiwi
browsers produce more similar fingerprints with each other than
with Firefox. In fact, the fingerprints were identical in the Yandex
vs. Kiwi comparison, as indicated by 0 in all the numerators. This
was expected since Yandex and Kiwi are Chromium-based and use
the same extensions from the Chrome Web Store, whereas Firefox
has its own Firefox Add-On Store.

A more surprising observation is that Yandex vs. Firefox and
Kiwi vs. Firefox have the same numerator values but not the same
denominator values (e.g. 244 for the numerator but 9032 and 9183
for the denominator in the “All” row, respectively). In other words,
the number of values that were different in the two comparisons
are the same, but the number of all recorded changes are in fact
different. Combined with our previous observation, this indicates
that although Yandex and Kiwi may have the same values for all the
changed attributes that they share, the actual list of attributes that
are being changed in one browser might not be identical to the list in
the other. For example, an attribute that was changed in Kiwi might
not have changed and thus not recorded in Yandex. This insight
allows us to conclude that even with the same extensions that share
the same modification values across same-family browsers, we can
still discriminate users based on the browsers used, by observing
the full list of attributes that were changed by the extensions.

3 DISCUSSION
3.1 Extension Fingerprintability & Cross-Effects
Through our DOM technique, we show that an attacker can utilize
the MutationObserver in a mobile context to record andmap a set of
mutations and consequently extract the list of installed extensions
from users. We also show that the existing CSS technique is also
applicable in a mobile context, in that by using the same elements
from the original dataset tested in a desktop setting [12], we could
fingerprint some of the corresponding mobile extensions as well.

Regarding the cross effects of extensions, we indicated that we
observed none when we examined CSS extensions and DOM ex-
tensions separately. When we installed all the extensions together
without distinguishing the relevant technique, however, we actually
discovered that the presence of an extension that is not tracked can
still be inferred by the values for other extensions. For example,
Dark Reader, which was tracked by our DOM technique, affected
the baseline values of numerous div pairs for CSS related extensions
by inverting the colors (e.g. baseline value is rgb(0,0,0) without Dark
Reader and rgb(232, 230, 227) with Dark Reader). Through this, we
observed a cross-effect between a DOM extension and other CSS
extensions, where we could detect the existence of Dark Reader by
examining the baseline values from CSS extensions, even without
a specific script that detects Dark Reader. This demonstrates that
even if a certain extension is not detected explicitly, it could be
inferred by closely examining the collected data, which would pro-
vide more discrimination between two users who might seemingly
have the same extension list at a first glance.



WPES ’23, November 26, 2023, Copenhagen, Denmark Brian Hyeongseok Kim, Shujaat Mirza, & Christina Pöpper

Table 2: An overview of percentage differences of Pairwise Comparisons (Cross-Device and Cross-Browser) based on CSS
technique for 5 extensions under consideration. The “All" row represents the case with all five extensions installed.

Cross-Device Cross-Browser

Per Extension Nord vs. Galaxy Nord vs. A6000 Galaxy vs. A6000 Yandex vs. Kiwi Yandex vs. Firefox Kiwi vs. Firefox

AdBlocker 0/114 0/114 0/114 0/105 0/98 0/105
DuckDuckGo 0/6 0/6 0/6 0/6 0/6 0/6
Avast SafePrice 48/8498 (0.56%) 48/8498 (0.56%) 0/8498 0/8298 219/8004 (2.74%) 219/8130 (2.69%)
360 Internet 0/560 0/560 0/560 0/816 - -
Touch VPN 9/958 (0.93%) 9/958 (0.93%) 1/958 (0.1%) 0/942 25/924 (2.7%) 25/942 (2.65%)
All 57/10136 (0.56%) 57/10136 (0.56%) 1/10136 (0.01%) 0/10167 244/9032 (2.7%) 244/9183 (2.66%)

3.2 Interaction of Factors and Values
Percentages of differences in cross-browser and cross-device com-
parisons are low, but if we use them to represent different users (e.g.
two users with the same extension list and browser but on different
devices), we can see how one instance of difference in values can
help an attacker discriminate users.

For example, we can see from the “Per Browser” section in Table 4
in Appendix B that all the cross-device differences are only visible
in Firefox only. To simply put, this tells us that the browser is a
crucial interacting factor in whether the attacker can get identifiable
information about the device. This specific insight calls attention
to how variable interaction can make user information visible.

From the “Per Device” section in the same table, we also see sim-
ilar observations we made in Section 2.3.1, where the tested device
impacts the results of the cross-browser comparison of interest.
Here, we see again that Galaxy and A6000 report similar percent-
ages, despite that they are manufactured by different companies.

Overall, by studying the interplay of variables for any pairwise
comparisons, we are able to further distinguish user data points be-
yond extension lists and show that we can obtain more information
about the unique device or browser they are using directly from
their extension modification data.

4 RELATEDWORK
Multiple studies demonstrate the threat of browser fingerprinting
and extension fingerprinting. Laperdrix et al. [11] and Vatsel et
al. [24] have shown the uniqueness and long-term trackability of
browser fingerprints. Pugliese et al [15] conducted a 3-year longi-
tudinal user study on browser fingerprinting. Van Goethem and
Joosen [4] and Cao et al. [2] demonstrate cross-session or cross-
browser fingerprinting capabilities. Acar et al. [1] and Nikiforakis et
al. [14] reveal the exploitation of browser extensions for fingerprint-
ing. Chen and Kapravelos [3] identify privacy-leaking extensions
with over 60 million users combined. Gulyas et al [5] uncover users’
behavioral uniqueness with detectable extensions. Sjösten et al. [17]
utilize Web Accessible Resources to determine extension presence
non-behaviorally. Sanchez-Rola et al. [16] enumerate extensions
through a timing side-channel attack against access control settings.
Weissbacher et al. [25] introduce a tool to detect extensions that
steal browser history, utilizing network traffic analysis.

More recently, Solomos et al. [20] introduce continuous fin-
gerprinting, a technique that observes extension modifications

throughout their lifecycle, increasing the coverage of identifiable
extensions by 66.9%. In a separate work, Solomos et al. [19] em-
phasize the importance of extension fingerprinting for tracking
functionalities triggered by user inputs, successfully fingerprinting
around 5,000 unique extensions, including previously undetectable
ones. Lin et al. [13] demonstrate that extension fingerprinting is
possible without relying on JavaScript APIs, achieving comparable
results to previous approaches. These works highlight the evolving
nature of extension fingerprinting and the persistent threat it poses.

As for countermeasures, Sjösten et al. [18] propose a whitelist-
based mechanism to control extension access for probing and con-
tent injection. Starov et al. [21] investigate the concept of extension
bloat, referring to page modifications unrelated to extension func-
tionality. They demonstrate that 5.7% of studied extensions were
unnecessarily identifiable and propose an access control mechanism
to tackle the issue.

5 CONCLUSIONS AND FUTUREWORK
This study presents the results of our extension fingerprinting
attack, combining two behavioral techniques and applying them
to mobile devices. In doing so, we try to both address a research
direction that has not been explored before and examine the extent
of data granularity that can be observed through our method. This
paper shows that performing extension fingerprinting on mobile
devices is not only a viable but also an important research direction
in the growing realm of mobile web experiences.

Whereas our selection of configurations is satisfactory for the
purpose of demonstrating feasibility of extension fingerprinting
on mobile browsers, future research can expand the scope of our
study by including a wider range of browsers, devices, operating
systems, and extensions. This would provide a more comprehensive
understanding of extension fingerprinting in diverse environments.
In this regard, conducting a user study within a mobile context
would be a valuable next step. Such a study would not only allow for
the collection of data from varied configurations, but also facilitate
testing the efficacy of the attack in a real-world setting.

Furthermore, testing our attack program against the state-of-
the-art countermeasures that can protect susceptible extensions
from being fingerprinted [9, 23] or can detect fingerprinting scripts
[6] will further validate our experimental results. This is an inter-
esting direction for future work, to pioneer in investigating how
fingerprinting countermeasures hold in a mobile context.



Extending Browser Extension Fingerprinting to Mobile Devices WPES ’23, November 26, 2023, Copenhagen, Denmark

REFERENCES
[1] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank

Piessens, and Bart Preneel. 2013. FPDetective: Dusting theWeb for Fingerprinters.
In Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communica-
tions Security (Berlin, Germany) (CCS ’13). Association for Computing Machinery,
New York, NY, USA, 1129–1140. https://doi.org/10.1145/2508859.2516674

[2] Yinzhi Cao, Song Li, and Erik Wijmans. 2017. (Cross-)Browser Fingerprinting via
OS and Hardware Level Features. In 24th Annual Network and Distributed System
Security Symposium, NDSS 2017, San Diego, California, USA, February 26-March 1,
2017. The Internet Society.

[3] Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering Informa-
tion Leakage from Browser Extensions. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (Toronto, Canada) (CCS
’18). Association for Computing Machinery, New York, NY, USA, 1687–1700.
https://doi.org/10.1145/3243734.3243823

[4] Tom Van Goethem and Wouter Joosen. 2017. One Side-Channel to Bring Them
All and in the Darkness Bind Them: Associating Isolated Browsing Sessions. In
11th USENIXWorkshop on Offensive Technologies (WOOT 17). USENIX Association,
Vancouver, BC. https://www.usenix.org/conference/woot17/workshop-program/
presentation/van-goethem

[5] Gabor Gyorgy Gulyas, Doliere Francis Some, Nataliia Bielova, and Claude Castel-
luccia. 2018. To Extend or Not to Extend: On the Uniqueness of Browser Ex-
tensions and Web Logins. In Proceedings of the 2018 Workshop on Privacy in
the Electronic Society (Toronto, Canada) (WPES’18). Association for Computing
Machinery, New York, NY, USA, 14–27. https://doi.org/10.1145/3267323.3268959

[6] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. 2021. Fingerprinting the
Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors. In 2021
IEEE Symposium on Security and Privacy (SP).

[7] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Gio-
vanni Vigna, and Vern Paxson. 2014. Hulk: Eliciting Malicious Behavior in
Browser Extensions. In 23rd USENIX Security Symposium (USENIX Security
14). USENIX Association, San Diego, CA, 641–654. https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/kapravelos

[8] Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, and Jason Polakis. 2020.
Carnus: Exploring the Privacy Threats of Browser Extension Fingerprinting. In
27th Annual Network and Distributed System Security Symposium, NDSS 2020, San
Diego, California, USA, February 23-26, 2020. The Internet Society.

[9] Soroush Karami, Faezeh Kalantari, Mehrnoosh Zaeifi, Xavier J. Maso, Erik
Trickel, Panagiotis Ilia, Yan Shoshitaishvili, Adam Doupé, and Jason Polakis.
2022. Unleash the Simulacrum: Shifting Browser Realities for Robust Extension-
Fingerprinting Prevention. In 31st USENIX Security Symposium (USENIX Secu-
rity 22). USENIX Association, Boston, MA, 735–752. https://www.usenix.org/
conference/usenixsecurity22/presentation/karami

[10] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine. 2020.
Browser Fingerprinting: A Survey. ACM Trans. Web 14, 2, Article 8 (April 2020),
33 pages. https://doi.org/10.1145/3386040

[11] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the
Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints.
In 2016 IEEE Symposium on Security and Privacy (SP). 878–894. https://doi.org/
10.1109/SP.2016.57

[12] Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros Kapravelos, and Nick
Nikiforakis. 2021. Fingerprinting in Style: Detecting Browser Extensions via
Injected Style Sheets. In 30th USENIX Security Symposium. Online, France. https:
//hal.archives-ouvertes.fr/hal-03152176

[13] X. Lin, F. Araujo, T. Taylor, J. Jang, and J. Polakis. 2023. Fashion Faux Pas: Implicit
Stylistic Fingerprints for Bypassing Browsers’ Anti-Fingerprinting Defenses. In
2023 2023 IEEE Symposium on Security and Privacy (SP) (SP). IEEE Computer
Society, Los Alamitos, CA, USA, 1640–1657. https://doi.org/10.1109/SP46215.
2023.00094

[14] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel,
Frank Piessens, and Giovanni Vigna. 2013. Cookieless Monster: Exploring the
Ecosystem of Web-Based Device Fingerprinting. In 2013 IEEE Symposium on
Security and Privacy. 541–555. https://doi.org/10.1109/SP.2013.43

[15] Gaston Pugliese, Christian Riess, Freya Gassmann, and Zinaida Benenson. 2020.
Long-Term Observation on Browser Fingerprinting: Users’ Trackability and
Perspective. Proceedings on Privacy Enhancing Technologies 2020 (05 2020), 558–
577. https://doi.org/10.2478/popets-2020-0041

[16] Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti. 2017. Extension
Breakdown: Security Analysis of Browsers Extension Resources Control Policies.
In 26th USENIX Security Symposium (USENIX Security 17). USENIX Association,
Vancouver, BC, 679–694. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/sanchez-rola

[17] Alexander Sjösten, Steven Van Acker, and Andrei Sabelfeld. 2017. Discovering
Browser Extensions via Web Accessible Resources. In Proceedings of the Seventh
ACM on Conference on Data and Application Security and Privacy (Scottsdale,
Arizona, USA) (CODASPY ’17). Association for Computing Machinery, New York,
NY, USA, 329–336. https://doi.org/10.1145/3029806.3029820

[18] Alexander Sjösten, Steven Acker, Pablo Picazo-Sanchez, and Andrei Sabelfeld.
2019. Latex Gloves: Protecting Browser Extensions from Probing and Revelation
Attacks. https://doi.org/10.14722/ndss.2019.23309

[19] Konstantinos Solomos, Panagiotis Ilia, Soroush Karami, Nick Nikiforakis, and
Jason Polakis. 2022. The Dangers of Human Touch: Fingerprinting Browser
Extensions through User Actions. In 31st USENIX Security Symposium (USENIX
Security 22). USENIX Association, Boston, MA, 717–733. https://www.usenix.
org/conference/usenixsecurity22/presentation/solomos

[20] Konstantinos Solomos, Panagiotis Ilia, Nick Nikiforakis, and Jason Polakis. 2022.
Escaping the Confines of Time: Continuous Browser Extension Fingerprinting
Through Ephemeral Modifications. In Proceedings of the 2022 ACM SIGSAC Con-
ference on Computer and Communications Security (Los Angeles, CA, USA) (CCS
’22). Association for Computing Machinery, New York, NY, USA, 2675–2688.
https://doi.org/10.1145/3548606.3560576

[21] Oleksii Starov, Pierre Laperdrix, Alexandros Kapravelos, and Nick Nikiforakis.
2019. Unnecessarily Identifiable: Quantifying the Fingerprintability of Browser
Extensions Due to Bloat. In The World Wide Web Conference (San Francisco, CA,
USA) (WWW ’19). Association for Computing Machinery, New York, NY, USA,
3244–3250. https://doi.org/10.1145/3308558.3313458

[22] O. Starov and N. Nikiforakis. 2017. XHOUND: Quantifying the Fingerprintability
of Browser Extensions. In 2017 IEEE Symposium on Security and Privacy (SP).
941–956. https://doi.org/10.1109/SP.2017.18

[23] Erik Trickel, Oleksii Starov, Alexandros Kapravelos, Nick Nikiforakis, and Adam
Doupé. 2019. Everyone is Different: Client-side Diversification for Defending
Against Extension Fingerprinting. In 28th USENIX Security Symposium (USENIX
Security 19). USENIX Association, Santa Clara, CA, 1679–1696. https://www.
usenix.org/conference/usenixsecurity19/presentation/trickel

[24] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018.
FP-STALKER: Tracking Browser Fingerprint Evolutions. In 2018 IEEE Symposium
on Security and Privacy (SP). 728–741. https://doi.org/10.1109/SP.2018.00008

[25] Michael Weissbacher, Enrico Mariconti, Guillermo Suarez-Tangil, Gianluca
Stringhini, William Robertson, and Engin Kirda. 2017. Ex-Ray: Detection of
History-Leaking Browser Extensions. In Annual Computer Security Applications
Conference (ACSAC). event-place: San Juan, Puerto Rico.

APPENDIX
A SAMPLE SCRIPTS

1 {" record1" : "ADD <style >.qc-cmp -showing { visibility:
hidden !important; } body.didomi -popup -open {
overflow: auto !important; } #didomi -host {
visibility: hidden !important; }</style > TO BODY",

2 "record2" : "REMOVE <fieldset ><div ></div ></fieldset >
FROM HTML",

3 "record3" : "CHANGE id AT FIELDSET FROM null TO sizzle "}

Listing 1: Sample JSON record of DOM mutations by
MutationObserver. First is an addition of a style tag to its
parent body tag. Second is a removal of a fieldset tag from
its parent HTML tag. Third is a change of attribute id on a
fieldset tag from the value of null to sizzle.

1 <div class=" trigger" id=28913 >
2 <div trig="no" orig_class ="adguard -alert"></div >
3 <div trig="yes" class="adguard -alert"></div >
4 </div >

Listing 2: Sample CSS div pair. The top div element with
𝑡𝑟𝑖𝑔 = ”𝑛𝑜” is the baseline element that will not be modified
by the extension. Its replica on the bottom with 𝑡𝑟𝑖𝑔 = ”𝑦𝑒𝑠”
serves as the trigger element and can be modified by the
extension. If it is modified, we can record the disparity and
detect this CSS extension.

https://doi.org/10.1145/2508859.2516674
https://doi.org/10.1145/3243734.3243823
https://www.usenix.org/conference/woot17/workshop-program/presentation/van-goethem
https://www.usenix.org/conference/woot17/workshop-program/presentation/van-goethem
https://doi.org/10.1145/3267323.3268959
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kapravelos
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/kapravelos
https://www.usenix.org/conference/usenixsecurity22/presentation/karami
https://www.usenix.org/conference/usenixsecurity22/presentation/karami
https://doi.org/10.1145/3386040
https://doi.org/10.1109/SP.2016.57
https://doi.org/10.1109/SP.2016.57
https://hal.archives-ouvertes.fr/hal-03152176
https://hal.archives-ouvertes.fr/hal-03152176
https://doi.org/10.1109/SP46215.2023.00094
https://doi.org/10.1109/SP46215.2023.00094
https://doi.org/10.1109/SP.2013.43
https://doi.org/10.2478/popets-2020-0041
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/sanchez-rola
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/sanchez-rola
https://doi.org/10.1145/3029806.3029820
https://doi.org/10.14722/ndss.2019.23309
https://www.usenix.org/conference/usenixsecurity22/presentation/solomos
https://www.usenix.org/conference/usenixsecurity22/presentation/solomos
https://doi.org/10.1145/3548606.3560576
https://doi.org/10.1145/3308558.3313458
https://doi.org/10.1109/SP.2017.18
https://www.usenix.org/conference/usenixsecurity19/presentation/trickel
https://www.usenix.org/conference/usenixsecurity19/presentation/trickel
https://doi.org/10.1109/SP.2018.00008


WPES ’23, November 26, 2023, Copenhagen, Denmark Brian Hyeongseok Kim, Shujaat Mirza, & Christina Pöpper

B DETAILED TABLES

Table 3: List of 16mobile extensions tested in the preliminary study.We note here that the two extensions that were incompatible
on Firefox Nightly were originally selected as part of the 16 extensions because they are indeed available on the Firefox Web
Store. However, in our experiment, we failed to download them on our physical device due to incompatibility. Since our criteria
was to test all extensions that were identifiable in at least one browser (rightmost column), we decided to include 360 Internet
Protection in that list of 6 extensions (indicated in bold).

Extension Yandex Kiwi Firefox Nightly ID’able in at least one browser

360 Internet Protection Available Available Not Downloadable Yes
AdBlock Not Available Available Available No
Adblock Plus Not Available Available Available No
AdBlocker Ultimate Available Available Available Yes
AdGuard AdBlocker Not Available Available Available No
Avast SafePrice Available Available Available Yes
Dark Reader Available Available Available Yes
DuckDuckGo Privacy Essentials Available Available Available Yes
Ghostery Available Available Available No
Grammarly Available Available Available No
Honey: Automatic Coupons & Cash Back Available Available Available No
LastPass Password Manager Available Available Not Downloadable No
Pinterest Save Button Available Available Available No
Privacy Badger Not Available Available Available No
Touch VPN Available Available Available Yes
uBlock Origin Not Available Available Available No

Total 11 16 14 6

Table 4: A detailed overview of percentage differences of Pairwise Comparisons based on CSS technique. Each of the three
sections (i.e. Extension, Browser, and Device) indicates through which variable we want to analyze the cross-device and
cross-browser pairwise comparisons. Table 2 in the paper above is equivalent to the Extension section shown here, and the
significance of the numbers can be understood in a similar fashion.

Cross-Device Cross-Browser

Per Nord vs. Galaxy Nord vs. A6000 Galaxy vs. A6000 Yandex vs. Kiwi Yandex vs. Firefox Kiwi vs. Firefox

Ex
te
ns
io
n

AdBlocker 0/114 0/114 0/114 0/105 0/98 0/105
DuckDuckGo 0/6 0/6 0/6 0/6 0/6 0/6
Avast SafePrice 48/8498 (0.56%) 48/8498 (0.56%) 0/8498 0/8298 219/8004 (2.74%) 219/8130 (2.69%)
360 Internet 0/560 0/560 0/560 0/816 - -
Touch VPN 9/958 (0.93%) 9/958 (0.93%) 1/958 (0.1%) 0/942 25/924 (2.7%) 25/942 (2.65%)
All 57/10136 (0.56%) 57/10136 (0.56%) 1/10136 (0.01%) 0/10167 244/9032 (2.7%) 244/9183 (2.66%)

Br
ow

se
r Yandex 0/6892 0/6892 0/6892 - - -

Kiwi 0/6896 0/6896 0/6896 - - -
Firefox 114/6484 (1.76%) 114/6484 (1.76%) 2/6484 (0.03%) - - -

D
ev
ic
e Nord - - - 0/6778 88/6024 (1.46%) 88/6122 (1.44%)

Galaxy - - - 0/6778 200/6020 (3.32%) 200/6122 (3.27%)
A6000 - - - 0/6778 200/6020 (3.32%) 200/6122 (3.27%)

Total 114/20272 (0.56%) 114/20272 (0.56%) 2/20272 (0.01%) 0/20334 488/18064 (2.7%) 488/18366 (2.66%)


	Abstract
	1 Introduction
	2 Experiments and Results
	2.1 Data Collection & Study Design
	2.2 DOM Extensions
	2.3 CSS Extensions

	3 Discussion
	3.1 Extension Fingerprintability & Cross-Effects
	3.2 Interaction of Factors and Values

	4 Related Work
	5 Conclusions and Future Work
	References
	A Sample Scripts
	B Detailed Tables

